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Abstract. The mass shift ∆mρ and width broadening ∆Γρ of ρ-mesons produced in heavy ion collisions
is estimated using general formulae which relate the in-medium mass shift of a particle to the real part of
the forward scattering amplitude Ref(E) of this particle on constituents of the medium and ∆Γ to the
corresponding cross section. It is found that the mass increases by some tens of MeV but, more importantly,
the width becomes large, increasing by several hundred MeV at beam energies of a few GeV·A and by
twice that amount at beam energies of about a hundred GeV·A.

1 Introduction

The problem of how the properties of hadrons change in
hadronic or nuclear matter in comparison to their free val-
ues has attracted a lot of attention recently. Among these
properties of immediate interest are the in-medium parti-
cles mass shifts and width broadenings. Different models,
as well as model independent approaches, were used to cal-
culate these effects both at finite temperature and finite
density. For a review see[1]. It is clear on physical grounds
that the in-medium mass shift and width broadening of a
particle is only due to its interaction with the constituents
of the medium. Thus one can use phenomenological infor-
mation on this interaction to calculate the mass shifts. In a
recent paper[2], two of us have argued that the mass shift
of a particle in medium can be related to the forward scat-
tering amplitude f(E) of this particle on the constituents
of the medium. Written in the medium rest frame it is:

∆m(E) = −2π
ρ

m
Ref(E) . (1)

Here m is the vacuum mass of the particle, E is its energy
in the rest frame of the constituent particle, and ρ is the
density of consituents. The normalization of the amplitude
corresponds to the standard form of the optical theorem,

kσ = 4πImf(E) , (2)

where k is the particle momentum. The width broadening
is given by

∆Γ (E) =
ρ

m
kσ(E) . (3)

The domain of applicability of (1) and (3) was discussed
in[2]. Briefly:
• The particle’s wavelength λ must be much less than
the mean distances between medium constituents d: λ =
k−1 ¿ d. This means that the particle’s momentum k
must be larger than a few hundred MeV.
• The particle’s formation length lf ∼ (E/m)/mchar, with
mchar ≈ mρ, must be less than the nucleus radius R.
• Ref(E), which enters (1), must satisfy the inequality
| Ref |< d.
• The main part of the scattering proceeds through small
angles, θ ¿ 1. Only in this case is the optical analogy on
which (1) and (3) are based correct.

(1) and (3) are correct also when the medium con-
stituents have some momentum distributions, such as
Fermi-Dirac or Bose-Einstein distributions for finite tem-
peratures and chemical potentials. In these cases averag-
ing over the constituents’ momentum distributions must
be performed on the right sides of (1) and (3). These equa-
tions were derived in [2] based on simple quantum mechan-
ical arguments and the optical analogy. This approach al-
lows one to formulate in an explicit way the applicability
conditions presented above. When the medium is a gas
in thermal equilibrium the equivalent to (1) and (3) can
be derived on the basis of thermal field theory.[3,4] give
a few examples and[5] gives a relativistic field-theoretic
derivation.

In most of the papers on the in-medium hadron mass
shifts the hadrons were considered at rest. As seen from (1)
this restriction is not necessary theoretically. It is desirable
to have theoretical predictions in a broad energy range
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since it extends the possibilities of experimental investi-
gation. As discussed in[2,6] for the cases of ρ or π-mesons
embedded in nuclear matter the energy dependence of the
mass shifts is rather significant at low energies where res-
onances dominate.

We estimate the mass shift and width broadening in
the case of ρ-mesons produced in heavy ion collisions. The
most interesting case is that of the ρ0 which can be ob-
served through the decay ρ0 → e+e− or µ+µ−. We will
assume that ρ-mesons are formed in the last stage of the
evolution of hadronic matter created in course of a heavy
ion collision when the matter can be considered as an al-
most noninteracting gas of pions and nucleons. (We will
neglect the admixture of kaons and hyperons, which is
known to be small[7], as well as heavy resonances.) This
stage occurs late in the collision when the total density of
nucleons and pions is of the order of the normal nucleon
density in a nucleus. The description of nuclear matter
as a noninteracting gas of nucleons and pions cannot be
considered as a very good one so it is clear from the be-
ginning that our results may be only semiquantitave. The
main ingredients of our calculation are ρπ and ρN forward
scattering amplitudes and total cross sections as well as
the values of nucleon and pion densities.

In this paper we consider central heavy ion collisions
and assume that nucleon and pion momentum distribu-
tions in the gas are just the momentum distributions mea-
sured experimentally in such collisions. The case where
nucleons and pions are assumed to exist in a state of
equilibrium at fixed temperature and chemical potential
is considered in a subsequent publication [8].

2 Calculation of ρN and ρπ cross sections
and forward scattering amplitudes

Let us first focus on the amplitudes and cross sections.
To determine these quantities we use the following proce-
dure. At low energies we saturate the cross sections and
forward scattering amplitudes by resonance contributions.
At high energies we determine σρN and σρπ from σγN and
σγπ using the vector dominance model (VDM). The cross
section σγN is well known experimentally[9], RefγN is de-
termined from the dispersion relation, and σγπ and Refγπ
can be found by the Regge approach. Since VDM allows
one to find only the cross sections of transversally polar-
ized ρ-mesons we restrict ourselves to this case. As was
shown in [2], when Eρ >∼ 2 GeV, ∆m and ∆Γ for lon-
gitudinal ρ-mesons are much smaller than for transversal
ones in nuclear matter. At zero ρ-meson energy, ∆m and
∆Γ for transverse and longitudinal ρ-mesons are evidently
equal. In the case of scattering on a low temperature pion
gas they are comparable [10]. Therefore our results should
be multiplied by a factor ranging between 1 and 2/3 for
unpolarized ρ-mesons.

To estimate Refρπ(s) at low energy we write, in the
center of mass (c.m.) frame:

Refρπ(s) = −
∑
R

FsFi
1

2qcm
BRΓR(

√
s−mR)

(
√
s−mR)2 + Γ 2

R/4
, (4)

where
√
s is the total c.m. energy, mR and ΓR are the mass

and total width of the resonance, BR is the branching
ratio of its decay into πρ and qcm is the center of mass
momentum

qcm =
√

[s− (mρ +mπ)2][s− (mρ −mπ)2]/2
√
s . (5)

Here Fs is the spin factor and Fi is the isospin factor.
The latter is equal to (1/2) × (2/3) = 1/3 for IR = 1.
The first factor reflects the fact that we are interested in
ρ0π scattering, and only one of two decay channels of an
IR = 1 resonance can contribute here, R± → ρ0π± but
not ρ±π0. The second factor corresponds to the assump-
tion that all three pion isospin states are equally popu-
lated in the gas. Similarly, for IR = 0 the isospin factor is
(1/3) × (1/3) = 1/9. We take into account the following
resonances [9]: a1(1260), π(1300), a2(1320) and ω(1420).
The nearest resonance under the threshold, ω(782), con-
tributes a negligilbe amount due to its narrow width. For
the spin factor we take Fs = 1, 1, 2, 1, respectively, for
the aforementioned resonances. (These factors correspond
to transverse ρ-mesons only.) The amplitude in the pion
rest frame is obtained from (4) by multiplication by the
rescaling factor kρ/qcm =

√
s/mπ, where kρ =

√
E2
ρ −m2

ρ

is the ρ momentum in the pion rest frame.
For σρπ we use the standard resonance formula.

σρπ =
∑
R

FsFi
π

q2
cm

BRΓ
2
R

(
√
s−m)2 + Γ 2

R/4
. (6)

According to Adler’s theorem the pion scattering ampli-
tude on any hadronic target vanishes at zero pion energy
in the target rest frame in the limit of massless pions.
In the framework of an effective Lagrangian this can be
achieved if the pion field enters by its derivative ∂ϕ/∂xµ.
We assume that in ρπ scattering through the a1 resonance
∂ϕ/∂xµ is multiplied by the ρ-meson field strength tensor
Fµν and the a1ν field. This results in the appearance of
an additional factor in Refρπ and in σρπ in comparison to
(4) and (6) (

s−m2
ρ −m2

π

m2
a1
−m2

ρ −m2
π

)2

. (7)

Here normalization at s = m2
a1

was performed. When s >
m2
a1

this factor is replaced by unity. The analogous factors
were also introduced for other resonance contributions.

At high energies we assume that the Regge approach
is valid for γπ scattering and apply the vector dominance
model (VDM) to relate ρπ and γπ amplitudes. As is well
known the Regge pole contributions to the forward scat-
tering amplitude, normalized according to (2), have the
form:

f(s) = − k

4πs

∑
i

1 + e−iπαi

sinπαi
sαiri , (8)

where αi is the intercept of the i’th Regge pole trajectory,
ri is its residue, and k is the projectile momentum in the
target rest frame. As follows from (2) and (8),

σ(s) =
∑
i

ris
αi−1 , (9)
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Ref(s) = − k

4πs

∑
i

1 + cosπαi
sinπαi

ris
αi . (10)

For σγπ only P (Pomeron) and P ′ Regge poles contribute
[11,12]. The residues of the P and P ′ poles in γπ scattering
were found by Boreskov, Kaidalov and Ponomarev (BKP)
[12] using Regge pole factorization and data on γp, πp and
pp scattering. Taking BKP values of P and P ′ residues we
have

σπγ(s) = 7.48α

[(
s

s0

)αP−1

+ 0.971

(
s

s0

)αP ′−1]
, (11)

where αP = 1.0808, αP ′ = 0.5475, α = 1/137, s0 = 1
GeV2 and σ in (11) is given in millibarns. For P and
P ′ intercepts we take Donnachie-Landshoff values [13].
Since in their fit of the data BKP assumed αP = 1,
αP ′ = 1/2, the values of the residues in (11) are slightly
changed in comparison with [12] in order to give the same
value of σπγ at s = 9 GeV2. From (10) and (11) the
real part of the forward γπ scattering amplitude can be
found:

Refπγ(s)π rest frame = − k

4π
7.48α

−0.106

(
s

s0

)αP−1

+0.752

(
s

s0

)αP ′−1
 , (12)

where the momentum k is in GeV and Ref is given in
mb·GeV.

In VDM σρπ(s) is related to σγπ(s) by [2]

σρπ(s) =
g2
ρ

4πα

(
1 +

g2
ρ

g2
ω

)−1

σγπ(s), (13)

where g2
ρ/4π = 2.54, g2

ρ/g
2
ω = 1/8, and the ϕ-meson con-

tribution is neglected. A similar relation holds for Refρπ.
Unlike [2], we prefer here to use direct Regge formulae
for Ref at high energies instead of inferring it from σ by
the dispersion relation since, in the latter approach1, the
results are sensitive to the low energy domain, which is
more uncertain.

The results of the calculations of σρπ and Refρπ as
functions of ρ-meson energy in the pion rest frame are
presented in Fig. 1. As may be seen from the figure
the matching of low and high energy curves is satis-
factory.

For the amplitude RefρN at laboratory energies of the
ρ above 2 GeV we use the results of[2] obtained with the
dispersion relation, VDM and experimental data on σγN .
At lower energies we again use the resonance approxima-
tion

1 We use this occasion to correct the misprint in the corre-
sponding equation in [2] – in the equation (7) of [2] instead of
the factor 1/(2π)2 it should be 1/2π2. In the calculations of [2]
in fact the correct factor was used

RefρN (s) = −1
4

1
2qcm

(14)

×
∑
R

(2JR + 1)Fi
Γ ρNR (

√
s−mR)

(
√
s−mR)2 + Γ 2

R/4
.

The factor of 1/4 appears because we consider only trans-
verse ρ-mesons. The isospin factors Fi are 1/3 and 2/3,
respectively, for N and ∆ resonances. We take 10 N and
∆ resonances with significant branchings into ρN and with
masses above the ρN threshold and below 2200 MeV as
quoted in [9]. This set of baryonic resonances is close to the
set used in [14]. The main difference in comparison with
[14] is that the effective widths Γ eff

ρN = ΓR
ρN (qcm/q

R
cm)2l+1

were introduced only for the resonances close to the ρN
threshold (qR

cm is the value of the c.m. momentum at the
resonance). When qcm > qR

cm we put Γ eff
ρN = ΓR

ρN . Be-
sides these resonances, two others with masses below the
ρN threshold were accounted for: the ∆(1238) and the
N(1500). It was assumed that VDM is valid for the con-
tribution of these resonances to the widths ΓρN and ΓγN in
the following form. Since both resonances are close to ρN
threshold, we can write for each of them ΓρN = qcmγρN
and ΓγN = kcmγγN , where qcm and kcm are the ρN and
γN momenta in the c.m., respectively. Then we assume
that γρN and γγN are related by the VDM formula

γγN = 4πα
1
g2
ρ

(
1 +

g2
ρ

g2
ω

)
γρN . (15)

The value of γγN can be found from the values of σγN
at the resonance peaks. The contribution of the ∆(1238)
and of the N(1500) to RefρN are essential at low energies:
they contribute about −1 to −0.5 fm at Eρ = 1− 2 GeV
in the nucleon rest frame.

The results for σρN and RefρN in the rest frame of the
nucleon, the curve obtained in[2] for high energies, and the
matching curve are shown in Fig. 2. As can be seen the
matching of low energy and high energy curves is good.

3 Determination of ρ-meson mass shift and
width broadening based on the nucleon and
pion distributions produced in heavy ion
collisions

As mentioned above, in heavy ion collisions only nucleons
and pions are considered as constituents of the medium.
Therefore, in this case (1) and (3) take the form

∆m(E) = −2π
m

[ρNRefρN (E) + ρπRefρπ(E)] , (16)

∆Γ (E) =
k

m
[ρNσρN (E) + ρπσρπ(E)] , (17)

where ρN and ρπ are the nucleon and pion densities dur-
ing the final stage of evolution of the hadronic matter
produced in heavy ion collisions.



384 V.L. Eletsky et al.: Mass shift and width broadening of ρ-mesons produced in heavy ion collisions

Fig. 1. Cross section a and real part of the for-
ward scattering amplitude b for ρ-mesons scat-
tering on pions as functions of the total ρ-meson
energy in the pion rest frame. The curves at low
energy are the result of the resonance approxi-
mation. The curves at high energy are the result
of the Regge parametrization. These curves are
matched at intermediate energies

We will restrict ourselves to consideration of central,
head-on, collisions with small values of impact parameter
when the number of participants – the nucleons, which
undergo significant momentum transfer – is close to the
total number of colliding nucleons.

As shown by the experimental data, the nucleons and
pions produced in heavy ion collisions cannot be consid-
ered as a gas in global thermal equilibrium even during
the last stage of evolution of hadronic matter created in
the collisions. In order to demonstate this let us discuss
separately the cases of high energy, E ∼ 100 GeV·A, and
low energy, E ∼ 1−10 GeV·A, heavy ion collisions. In the
case of high energy collisions the longitudinal and trans-
verse momenta of nucleons and pions are very different.
In the experiment on S + S collisions at 200 GeV·A [15]
it was found that 〈pcm

LN 〉 = 3.3 GeV, 〈pTN 〉 = 0.61 GeV,

and 〈pcm
Lπ〉 ≈ 0.70 GeV, 〈pTπ〉 ≈ 0.36 GeV. In other ex-

periments on high energy heavy ion collisions – see [16,17]
– the situation is qualitatively similar. This means that
one can by no means speak about a thermal gas of final
particles in global equilibrium, and their momentum dis-
tributions must be taken from experiment. This, however,
still leaves open the possibility of local thermal equilib-
rium.

The data for low energy heavy ion collisions also indi-
cate that pions and nucleons cannot be described as gases
in global thermal equilibrium. The angular distributions
of pions produced in Ni+Ni collisions at E = 1−2 GeV·A
shows essential anisotropy [18]. If the pion angular distri-
bution in the centre of mass system is approximated by
1 + a cos2 θ then, from the data, follows a ≈ 1.3. Unfortu-
nately, there is not enough experimental information on
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Fig. 2. Same as for Fig. 1 but for ρ-mesons scat-
tering on nucleons. The curves at high energy are
from [2]

nucleon angular and momentum distributions. We have
checked the hypothesis of global thermal equilibrium by
assuming that the probability of production of the given
number of particles is proportional to the statistical weight
of the final state (Fermi-Pomeranchuk approach [19,20]).
It is evident that this hypothesis is even more general
than the hypothesis of global thermal equilibrium. In this
approach the pion/nucleon ratio Rπ = nπ/N in central
collisions can be predicted in terms of the main ingredient
of the method – the volume per particle at the final stage
of evolution and, of course, the initial energy. A calcula-
tion shows that the data [18] on the energy dependence
of Rπ are well described by the statistical model, but in
order to get the absolute values of Rπ in Ni+Ni as well
as in Au+Au [21] collisions it is necessary to put the vol-
ume per nucleon very small, about 5 times smaller than
in a normal nucleus, which is unacceptable. Therefore, the

only way to perform the averaging over momentum distri-
butions of pions and nucleons is by taking the latter from
experimental data on heavy ion collisions.

When calculating the ρ-meson mass shift and width
broadening an averaging must be performed over the ρ-
meson direction of flight relative to nucleons and pions.
Such a calculation can be done only for real experimental
conditions. For this reason we restrict ourselves to rough
estimates.

Consider first the case of high energies. As an exam-
ple take the experiment [15] for central collisions where
the ratio of pion to nucleon multiplicities was found to be
Rπ = 5.3. Suppose that in this experiment the ρ-meson
is produced with longitudinal and transverse momenta in
the laboratory system kL = 3 GeV, kT = 0.5 GeV. We
choose these values as typical for such an experiment. For
these values of ρ momenta the formation time of the ρ-
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meson is close to the mean formation time of pions so a
necessary condition of our approach is fulfilled. Since the
mean momenta of nucleons and pions in the experiment
[15] are known (they were presented above) it is possible,
using the curves of Figs. 1 and 2, to calculate the mean
values of RefρN , Refρπ, σρN and σρπ in ρN and ρπ scat-
tering. The results are, in lab frame:

〈RefρN 〉 ≈ −1.1 fm , 〈Refρπ〉 ≈ 0.03 fm , (18)

〈σρN 〉 ≈ 45 mb , 〈σρπ〉 ≈ 20 mb . (19)

The small value of 〈Refρπ〉 arises from a compensation of
positive and negative contributions from low and high en-
ergy collisions, that is, from the scattering of the ρ-meson
on pions moving in the same direction (comovers) or in
the opposite one. Because of this compensation 〈Refρπ〉 is
badly determined, but since it is small this fact does not
influence the final result.

Using (18) and (19) we can now find the mass shift
and width broadening of the ρ-meson. For nucleon and
pion densities we take

ρN =
N

V
=

N

NυN + nυπ
=

1
υN (1 +Rπ

υπ
υN

)
, (20)

ρπ =
nπ
V

=
n

NυN + nυπ
=

Rπ
υN (1 +Rπ

υπ
υN

)
, (21)

where N and n are the numbers of nucleons and pions at
the last stage of evolution, Rπ = n/N , and V is the volume
of system at this stage. It is assumed that at this stage of
evolution any participant – nucleon or pion – occupies the
volume υN or υπ, respectively. We can write

ρN =
ρ0
N

1 +Rπβ
, ρπ =

ρ0
NRπ

1 +Rπβ
, (22)

where ρ0
N = 1/υN and β = υπ/υN . For numerical esti-

mates we take ρ0
N = 0.3 fm−3, about two times standard

nucleon density. This number is probably one of the most
uncertain ingredients of our calculations. Substitution of
(18), (19) and (22) in (16) and (17), together with the
experimental values Rπ = 5.3 and β = 1, gives

∆mρ = 18− 2 = 16 MeV , (23)

∆Γρ ≈ 150 + 400 = 550 MeV . (24)

The first numbers above refer to the contributions from
ρ − N and second from ρ − π scattering. Because the ρ-
meson width broadening appears to be very large, a basic
condition of our approach, ∆Γ ¿ mρ, is badly fulfilled.
The applicability condition of the method, | Ref |< d,
is not well satisfied either since in this case d = 0.9 fm.
For these reasons the values of ∆mρ and ∆Γρ may be
considered only as estimates.

The main conclusion to be drawn from (23) and (24)
is that for ρ-mesons produced in high energy heavy ion
collisions with the above chosen values of longitudinal and
transverse momenta, the mass shift is small, but the width
broadening is so large that one can hardly observe a ρ-peak

in e+e− or µ+µ− mass distributions. Let us estimate how
sensitive the results are to variations of kL and kT . It can
easily be seen that the mass shift will always be small, say
∆mρ <∼ 50 MeV. If we put kT = 0 instead of kT = 0.5
GeV, this will only weakly influence the mean value of σρN
and decrease σρπ by 20%. The latter results in a decrease
of ∆Γρ by 80 MeV, which is within the limits of accuracy
of our estimates. The variation of kL in the range 1 GeV
to 10 GeV also results in variations of 10-20% in ∆Γρ.

As mentioned above, the main uncertainty in our ap-
proach comes from the assumed value of the nucleon den-
sity at the final stage of evolution: ρ0

N = 0.3 fm−3. If this
density would be a factor of two smaller then ∆Γρ ∼ 250
MeV and the ρ-meson could be observed as a broad peak
in the e+e− or µ+µ− mass spectrum. It should be men-
tioned, however, that the chosen value of β = υπ/υN = 1
is rather uncertain. If we assume that β = (rπ/rN )3, where
rπ and rN are pion and nucleon electromagnetic radii,
rπ = 0.66 fm, rN = 0.81 fm, then β ≈ 0.55. The choice of
such β increases ∆Γ by the factor of 1.6.

In the course of ρ-meson propagation in the medium
its decay width Γ (ρ→ ππ) may decrease2. This effect can
be estimated by substitution of an effective pion propa-
gator in the medium [ k2 − (mπ − iΓπ/2)2 ]−1 into the
imaginary part of pion loop determining ρ → ππ decay.
(Here Γπ is the effective pion width in the medium aris-
ing from pion interaction with medium constituents.) The
calculation performed in this way gives

Γ (ρ→ ππ)medium

Γ (ρ→ ππ)vacuum
= 1− 3

8

(
Γπ
mρ

)4

. (25)

Even when Γπ ≈ 500 MeV this correction is small.
Our qualitative conclusion is that in central collisions

of heavy nuclei at high energies, E ∼ 100 GeV·A, where
a large number of pions per participating nucleon is pro-
duced, the ρ-peak will be observed in e+e− or µ+µ− mass
distributions only as a very broad enhancement, or even no
enhancement at all. Inspite of the assumptions we made,
including noninteracting nucleon and pion matter at the
final stage of evolution and the specific numerical value
of the nucleon density, we believe that this qualitative
conclusion is still valid. This conclusion is in qualitative
agreement with the measurement of e+e− pair production
in heavy ion collisions [22] where no ρ-peak was found and
only a smooth e+e− mass spectrum from 0 to 1 GeV was
observed. If, however, such a peak would be observed in
future experiments it would indicate that the hadronic
(nucleon and pion) density at the final stage of evolution,
where the ρ-meson is formed, is very low, even lower than
normal nuclear density.

Recently preliminary data in Pb−Au collisions at 160
GeV·A have been presented [23] where, in studying the
e+e− mass spectrum, it was found that the ρ-peak is ab-
sent at kT (e+e−) < 400 MeV, but reappears as a broad
enhancement at kT (e+e−) > 400 MeV. We do not see the
possibility for such a phenomenon in the framework of our

2 One of the authors – B.I. – is grateful to G.Brown for this
remark
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approach for central heavy ion collisions. Moreover, we be-
lieve that for central collisions the absence of a ρ-peak at
low kT and its reappearance at higher kT will be hard to
explain in any reasonable model. The only explanation we
see for this effect is that in this experiment peripheral ρ-
meson production plays an essential role. Then ρ-mesons
with higher kT have a larger probability to escape the
collision region and decay as free ones.

Let us turn now to the case of lower energy heavy ion
collisions, E ∼ a few GeV·A. Consider, as an example,
heavy ion collisions at Ekin = 3 GeV·A and production of
ρ-mesons of energy Etot

ρ = 1.2 GeV in the forward direc-
tion. (This particular value of the ρ-meson energy was cho-
sen because our approach works better at higher Eρ, and
ρ-mesons of this energy can be kinematically produced at
such a beam energy). The number of pions produced can
be estimated by extrapolation of the data [18] on Ni+Ni
collisions. This data shows, with good accuracy, that Rπ
is linear in

√
s/2 − m. We find that Rπ = 0.48. As fol-

lows from analysis of the data [18] at Ekin = 1.93 GeV·A,
the average energies of produced pions are rather small:
Eπ ∼ 200−300 MeV. At such low energies it is reasonable
to suppose that for pions 〈pL〉 = 〈p⊥〉 ≈ 0.2 GeV. Assum-
ing that the mean perpendicular momentum of nucleon
participants is the same as at high energy – 〈pTN 〉 = 0.61
GeV [15] (this assumption does not much influence the
final results) we can construct the momentum distribu-
tions of nucleons. Then we are in a position to calculate
the mean values of RefρN , Refρπ, σρN and σρπ. The re-
sults are:

〈RefρN 〉 = −0.54 fm , 〈Refρπ〉 = 0.30 fm , (26)

〈σρN 〉 = 45 mb , 〈σρπ〉 = 13 mb . (27)

For the ρ-meson mass shift and width broadening we have,
with the same value of ρ0

N as above and β = 1:

∆mρ = 37− 10 = 27 MeV , (28)

∆ Γρ = 245 + 35 = 280 MeV . (29)

The first numbers above refer to ρN scattering, the second
ones to ρπ. The conclusion is that in low energy heavy
ion collisions a ρ-peak may be observed in e+e− or µ+µ−

mass distributions as a broad enhancement approximately
at the position of ρ-mass.
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